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Abstract

I show that capital is misallocated across liquidity pools on blockchain-based decen-
tralized exchanges. Many pools have persistent abnormal returns, either with respect
to factor models or relative to options-implied liquidity premia. Pools with higher past
returns continue to have significantly higher risk-adjusted returns in the future. This
return predictability arises because liquidity flow is insensitive to net returns. Instead,
liquidity flows chase fee revenues – the part of return that is prominently marketed
as APY – but ignore adverse selection losses – the part of return that is implicit and
rarely displayed. Aggregate liquidity on decentralized exchanges would have shrunk by
one third if liquidity providers were equally sensitive to adverse selection losses.

Keywords: liquidity provision, automated market makers, investor sophistication
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1 Introduction

Decentralized exchanges (DEXs) are a key building block of decentralized finance (DeFi).

Figure 1 shows the aggregate monthly trading volume on DEXs, which has grown rapidly

and surpassed $150 billion in the “DeFi Summer” of 2021. Due to technical reasons such

as transaction costs, most DEXs operate as automated market makers (AMMs), which de-

part significantly from the traditional limit order book exchanges (LOBs) that have been

extensively studied.1 Who provides liquidity on DEXs? Do they allocate liquidity efficiently

across assets? These are the questions I seek to answer in this paper.

I show that liquidity is misallocated across asset pairs on Uniswap, one of the largest DEXs.

I arrive at this conclusion through a detail empirical analysis of both the returns to liquidity

provision (LP returns) and liquidity providers’ actions to deposit or withdraw liquidity (LP

flows). LP returns exhibit significant cross-sectional predictability that is hard to reconcile

with risk-based explanations. Instead, LP return anomalies can be explained by LP flows,

which appear to ignore un-marketed adverse selection losses. As a result, pool with higher

realized net returns do not attract sufficient liquidity inflows and continue to yield higher

net returns in the future.

I begin by describing in detail how liquidity provision works in a constant-product automated

market maker (CPAMM), the most widely adopted design of DEX. I show that liquidity

provision on CPAMM is subject to the usual trade-off between gains from noise traders (in

the form of fee revenue) and adverse selection losses from informed traders (the so-called

“impermanent losses”). In contrast to traditional limit order book exchanges, blockchain-

based automated market makers necessitate passive liquidity and facilitate the entry of

unsophisticated retail investors. Indeed, more than half of the liquidity positions live longer

than a week from open to close.

1Section 3 provides details on why automated market markers dominate limit order books on the current
blockchains.
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In an efficient market, investors are expected to earn zero risk-adjusted returns. I find evi-

dence of persistent return anomalies in the cross section of liquidity pools. First, on average,

some pools have average risk-adjusted returns (Sharpe ratios) that are as high as 67.7% per

annum (1.77), whereas others as low as -61.2% per annum (-0.71). Secondly, exploiting the

fact that adverse selection losses on AMM are price-contingent, I compute options-implied

liquidity compensation and find them to be persistently different from realized liquidity com-

pensation. Lastly, I use a sorted portfolio approach to show that pools in the top quintile

of past returns continue to have significantly higher risk-adjusted returns than pools in the

bottom quintile of past returns, at 66.8% per annum.

Why are there persistent return differences across pools? Why doesn’t liquidity adjust to

equilibriate the return differences? I show that liquidity flows are insensitive to net returns.

Instead, liquidity flows chase fee revenues – the part of return that is prominently marketed

as APY – but ignore adverse selection losses – the part of return that is implicit and rarely

displayed. As a result, pools with higher fee revenues attract more liquidity, even though

they tend to have higher adverse selection losses and insignificant returns on net. I show that

taking adverse selection risk into account would significantly increase the payoffs to liquidity

providers.

I provide a simple derivation of what would be the counterfactual liquidity flows if liquidity

providers care equally about adverse selection losses as fee revenues. There would have been

34 % less aggregate inflow from Uniswap V2 over its 10-month active period.

My results show that the average LPs on DEXs are unsophisticated investors that chase

simple signals. From a policy standpoint, my results suggest more regulation – by either the

government or industry participants themselves – be put in place to curb the asymmetric

marketing of fee revenues vs adverse selection losses. In addition, there should be stricter

guidance on the use of “APY” in marketing materials, especially for investment products with

volatile returns such as liquidity pools. From a developer standpoint, there are opportunities
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in building platforms that more accurately describe the gains and losses to retail investors,

which should succeed in the long run.

The rest of this paper is organized as follows. Section 2 summarizes this paper’s contribution

to the literature. Section 3 provides background on constant-product automated market

makers. 4 describes the data. Section 5 shows evidence of persistently abnormal LP returns.

Section 6 shows evidence of sub-optimal LP flows. Section 8 concludes.

2 Literature

A growing literature studies the returns to liquidity provision on decentralized exchanges,

including Angeris et al. [2019], Evans [2020], Aigner and Dhaliwal [2021], Evans et al. [2021],

Heimbach et al. [2021], Loesch et al. [2021], Adams and Liao [2022], Heimbach et al. [2022].

Most of the papers are theoretical. On the empirical side, Heimbach et al. [2021] show that

Uniswap V2 LP returns are largely driven by adverse selection losses, Loesch et al. [2021]

show that most Uniswap V3 LPs make negative returns on net, Adams and Liao [2022]

show that Uniswap V3 provide higher fee returns than Uniswap V2 due to concentrated

liquidity, and Heimbach et al. [2022] shows that Uniswap V3 LP returns depend heavily

on the complexity of LP strategies. My contributions are two folds. First, I highlight that

the right benchmark for LP net return is not zero, but rather the premium for bearing

risks associated with adverse selection losses. I quantify the risk premium using data from

the options market and show a large gap between options-implied vs realized LP returns.

Secondly, I show that not only are LP returns abnormal, they are also highly persistent – a

simple trading strategy that exploits the persistence of LP returns earn a high risk-adjusted

return. These novel empirical findings suggest that misallocation is a key driver of liquidity

returns on decentralized exchanges.
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A few papers study how liquidity providers behave on decentralized exchanges, including

Aoyagi [2020], Capponi and Jia [2021], Neuder et al. [2021], Aoyagi and Ito [2021], Heimbach

et al. [2021], Lehar and Parlour [2021]. Most of the papers are theoretical and assume

perfectly rational agents. In contrast, I find that LPs are quite unsophisticated – they

chase fee revenues, the part of returns prominently marketed as APY, and ignore adverse

selection losses, the part of returns that is never displayed. My findings differ from the

previous literature due to the following reasons. First, I assemble a comprehensive dataset

covering more pools and spanning longer time periods.2 Secondly, I make improvement on the

regression framework by incorporating the latest tools from the mutual fund literature, such

as Fama-MacBeth regression, pool fixed effects to account for unobserved persistent factors,

inclusion of lagged flows to account for flow persistence, clustering of standard errors for

more robust inference, and a battery of robustness checks. Lastly, I build a new dataset on

liquidity mining programs – not just those conducted by Uniswap but also those carried out

by native protocols – which have been an important omitted variable in previous analyses.

In analyzing LP flows, My methodologies borrow heavily from the mutual fund literature,

including Berk and van Binsbergen [2016], Barber et al. [2016], Ben-David et al. [2021], Song

[2020]. Song [2020] shows that mutual funds with high factor-related returns accumulate too

much assets that their future returns significantly under-perform. In a similar spirit, I show

that pools with high net returns do not experience higher inflows and continue to out-perform

in the future.

More generally, this paper contributes to the rapidly growing literature on DeFi. I refer to

Harvey et al. [2021] for an excellent and comprehensive survey.

My results speak to the dark side of cryptocurrencies [Foley et al., 2019, Cong et al., 2021]

2I study all Uniswap V2 pools from their inceptions to May 2021, focusing on before Uniswap V3 was
launched in May 2021. Lehar and Parlour [2021] study all Uniswap V1 and V2 pools from their inceptions to
May 2021. Capponi and Jia [2021] study 6 Uniswap V2 pools and 6 SushiSwap pools from April to December
2021.
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and financial innovations in general [Célérier and Vallée, 2017]. Most liquidity providers

on decentralized exchanges seem to be unsophisticated retail investors that do not fully

understand the risks involved. More discipline is needed, either by market participants

themselves or through regulators, so that efficiency of this market can be improved. However,

there is also bright side [Calvet et al., 2020]. Decentralized exchanges democratize market

making and allow passive investors to potentially earn high premia from liquidity provision,

and I show simple strategies on how to identify and capture these lucrative investment

opportunities.

3 Constant-Product Automatic Market Maker

In traditional limit order book exchanges, liquidity is usually supplied by high-frequency

trading firms that post and update limit orders at millisecond interval. Such high-frequency

operations have been infeasible on blockchains such as Ethereum mainnet due to technical

limits on block size and block speed.3 As a result, limit order book (e.g. Airswap) has

not been very successful. Instead, automated market makers (AMMs) have proven to be

the successful application. I focus on one particular class of AMMs, the constant-product

automatic market maker (CPAMM). As will be shown in Section 4, CPAMM accounts for

most of the trading volume and most of the liquidity among all DEXs during my sample

period.

3.1 Trading on CPAMM

Each pair of assets forms a pool. For example, suppose that the first asset is BTC and

the second asset USD. Denote their amounts in the pool by X and Y , respectively. The

3New developments such as Polygon has overcome these technical limits and led to revival of limit order
book on blokchains.
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exchange of the two assets – e.g. swapping in BTC and swapping out USD, or vice versa –

follows the simple rule:

XY = K (1)

where K stays invariant to all swaps. Figure 2 visualizes the rule. Suppose there are initial

X0 amount of BTC and Y0 amount of USD. When a trader swaps in ∆X of BTC, the amount

of BTC in the pool becomes X1. The smart calculates calculates what would be the new

amount of USD Y1 so that the pool stays on the the curve. The difference ∆Y is what the

trader swaps out in return.

Note that the more that one trades, the worse the term is. This is because the curve is

convex. If the convexity is zero, i.e. the curve is a straight line, one additional unit of ∆X

always gets the same change in ∆Y . However, because the curve is convex, one additional

unit of ∆X always gets less change in ∆Y , compare to the last unit change of ∆X. This

design allows price to change in response to trading, and moreover change in the direction

that trades are supposed to reveal new information. ? discuss more on the properties implied

by the convexity of the curve.

3.2 Arbitraging on CPAMM

Arbitrageurs play a key role in CPAMM. The pool price of BTC in terms of USD is the

amount of USD swapped out per unit of BTC swapped in, for an infinitesimal amount:

P = −∂Y

∂X
=

Y

X
(2)

where the second equality follows from Equation 1.

Since the pool price is entirely determined by relative reserves of the two assets, it can deviate

from the true price, i.e. what is observed in the market. However, large deviation represents
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an arbitrage opportunity, and anyone can make a profit by buying at the low price and then

selling at the high price. As arbitrageurs buy (sell) the lower (higher) pool price relative to

the market price, they increase (decrease) the reserve of BTC, which then push up (down)

the pool price towards the market price.

We assume that no arbitrage holds, i.e. arbitrageurs do a good job and pool price does not

deviate much from market price. This is a mild assumption on market efficiency that is very

common in the finance literature. Angeris and Chitra [2020] and and Lehar and Parlour

[2021] show theoretical and empirical support of this assumption.

3.3 Liquidity provision on CPAMM

In order for traders or arbitrageurs to swap one asset for the other at short notice, there

need to be positive reserves of both assets, and that is where liquidity providers (LPs) come

in. In CPAMM, liquidity provision means depositing or withdrawing equal value of both

assets, so that pool price remains unchanged. To see why, first observe that the two assets

always have equal value: PX = Y , which follows directly from Equation 2. Therefore, any

addition or subtraction of reserves need to happen to both assets in equal value.

When an LP deposits liquidity, she gets LP tokens that represent their share of the pool.

The number of LP tokens outstanding equals to
√
K.

One useful measure of liquidity is total value locked (TVL). Using the second token as the

numeraire, TVL is defined as:

TV L = PX + Y = 2PX = 2Y (3)

where the second and third equality follows from Equation 2. At times when I need to
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compare liquidity across pools, I express TVL in terms of U.S. dollar:

TV L$ = P $
XX + P $

Y Y (4)

3.3.1 Returns on liquidity provision (LP returns)

Why would anyone engage in liquidity provision, instead of just holding on to the assets?

The answer is that they earn returns on liquidity provision (LP returns). I define LP returns

as relative to the holding returns (i.e., the opportunity cost of providing liquidity), and it

consist of two components: fee revenues and adverse selection losses.

Fee revenues. As the price of consuming liquidity, each trade needs to pay a fee equal to a

constant fraction of the amount of asset swapped in. This fee is automatically charged and

deposited into the pool along with the asset swapped in.

Expressing fee revenues as returns at the pool level requires some work. For example,

suppose that the pool originally has certain amount of liquidity, some trades occur, then a

large amount of new liquidity is deposited to the pool, and then a large number of trades

occur. I cannot attribute all of the trading fees to the original liquidity. The original liquidity

only gets a share of the fees associated with the second wave of trading, depending on its

size relative to the new liquidity. At the same time, the original liquidity does get all of the

fees associated with the first wave of trading.

To address this, I focus on the fee revenues to a hypothetical marginal LP. Specifically, I

calculate the hypothetical return of an LP that deposits a small fraction of the pool (e.g.

1%) at the beginning and withdraw that liquidity at the end. If there are inflows of new

liquidity, the marginal LP’s share of the pool shrinks, and her share of the fee revenues is

proportionally reduced.
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Formally, given fee rate f (e.g. 0.3% for all Uniswap V2 pools), amount of fee revenues for a

token in a given time period t can be easily calculated from amount of that token swapped

in:

fSwapInt

For a marginal LP that entered the pool at the end of t, the amount of fee revenues accrued

to her in a future time period t+ s is given by:

AccruedFeet,t+s = fSwapInt

LP#
t+s−1

LP#
t

where LP#
t denotes number of LP tokens outstanding at the end of t. Finally, the return on

fee revenues from t to t+ h is:

Rfee
t,t+h =

(
∑h

s=1 AccruedFeeAt,t+s)Pt+h + (
∑h

s=1 AccruedFeeBt,t+s)

TV Lt

(5)

Note that fee revenues are never negative – the worst that can happen is that there is no

trade and hence zero fee revenue.

Adverse selection losses. Absent fees, LPs incur adverse selection losses whenever price

changes. To see why, suppose, without loss of generality, that the pool price equates the

market price initially, and then the market price increases. Pool price does not adjust

automatically – arbitrageurs need buy from the pool (and then sell to the market for a

profit) to push up the pool price. However, in this process, LPs incur losses by selling at

the stale and low pool price instead of the fair and high market price. Another way to

understand this is that, since this is a zero-sum game, any gains to the arbitrageurs are

losses to the LPs.

These adverse selection losses are commonly referred to by practitioners as “impermanent

losses”, since the losses go back to zero if prices revert, hence impermanent. In reality,
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cryptocurrency prices rarely mean-revert and losses are mostly permanent.

Assuming no arbitrage – that is, pool price equal to market price – adverse selection losses

become a deterministic function of price changes. To see this, first note that given any pool

price P ′, pool reserves X and Y and TVL are completely pinned down, absent any deposit

or withdrawal of liquidity and hence no change in K:

X(P ′) =
√

K/P ′, Y (P ′) =
√
KP ′, TV L(P ′) = 2

√
KP ′

In this world where fee revenues are assumed to be zero, LP returns are:

RAS =
TV L(P ′)− (P ′X(P ) + Y (P ))

TV L(P )
=

2
√

P ′/P − (P ′/P + 1)

2
(6)

where the first term in the numerator is the new TVL and the second term is the holding

value (i.e. the opportunity cost of providing liquidity). It is easy to show that RAS is never

positive. I call −RAS adverse selection losses, which are never negative.

Figure 3 visualize the mechanical relationship between adverse selection losses and prices

changes. adverse selection losses are bigger for bigger price changes. Therefore, pools where

token prices are more volatile incur higher risk of adverse selection losses to the liquidity

provider.4

Net returns. From an LP’s perspective, what matters is the net effect of fee revenues and

adverse selection losses:

Rnet = Rfee +RAS (7)

In what follows, all LP returns are subtracted by the risk-free rates using data on U.S.

Treasury bills.

4See Aigner and Dhaliwal [2021] for a more in-depth discussion.
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4 Data and Factor Models

4.1 Data sources

I study Uniswap V2, the largest CPAMM and also the largest DEX as of May 2021 (before

Uniswap V3 was launched). Figure 1 shows aggregate dollar trading volume and aggregate

dollar liquidity over time for Uniswap V2 vs other major DEXs. Uniswap V2 had $5.0

billions of total value locked as of May 2021 and supported $261 billions of trading volume

in the preceding year.

I obtain transaction-level data on Uniswap V2 from BigQuery and Dune Analytics. I then

aggregate transactions to daily, weekly, or monthly level to perform my empirical analyses.

Daily prices on cryptocurrencies are from CoinMarketCap and obtained through Yahoo

Finance API.

Risk-free rates are estimated using data on U.S. Treasury bills from the CRSP US Treasury

Database.

4.2 Factor models

High returns can be due to either high alpha or high risk. To capture risk, I use the three-

factor model from LIU et al. [2022], who show that market, size and momentum capture the

cross section of cryptocurrency returns. Specifically, the three-factor model is:

Ri,t −Rf,t = αi + βCMKT
i CMKTt + βCSMB

i CSMBt + βCMOM
i CMOMt + ϵi,t

where Ri,t is return on the asset of interest (e.g., net return on a liquidity pool), Rf,t risk-free

return, alphai the level of abnormal return not explained by the risk factors, CMKT the
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size-weighted aggregate return on all cryptocurrencies, CSMB the return difference between

cryptocurrencies with small vs large market capitalization, CMOM the return difference

between past winners vs losers, and β exposure to the risk factors.

We are interested in alphai, the level of abnormal return not explained by the risk factors,

which can be estimated through a OLS regression.

5 Persistent Abnormal LP Returns

In this section, I show persistent abnormal return differences across liquidity pools. First, I

show that while some pools have highly positive risk-adjusted average returns, others have

highly negative risk-adjusted average returns. Then, focusing on a subset of pools, I calculate

their options-implied liquidity premia, which deviate persistently from actually realized LP

revenues. Lastly, using a sorted portfolio approach, I show that pools with higher (lower)

past returns continue to have significantly higher risk-adjusted future returns.

5.1 Average returns

I first examine average returns across pools. I focus on raw averages, risk-adjusted alphas

with respect to common risk factors, as well as Sharpe ratios that adjust for idiosyncratic

volatility. To minimize the influence of outliers, I restrict to pools with at least 40 weeks of

returns and winsorize returns at the 99th percentile for each cross section. I also exclude

small pools and restrict to pools with at least $100K in total value locked.

Figure 4 shows the results. Most pools have negative average returns, either in raw or

factor-adjusted, consistent with the findings in [Loesch et al., 2021]. More importantly,

many pools have large positive or negative returns that are hard to reconcile with risk-based
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explanations. Specifically, some pools have average returns as large as (negative) 50% per

annum, even after adjusting for common cryptocurrency factors, and the Sharpe ratios are

as large as (negative) 0.50. For reference, the Sharpe ratio of weekly Bitcoin (US equity)

return is 0.23 (0.13) over the same period.

The cross-sectional return differences indicate misallocation: pools with large positive re-

turns are supposed to see higher inflows of liquidity that will dilute the fee revenues and

decrease overall returns, while pools with large negative returns should see the opposite.

As opposed to liquidity misallocation, one alternative explanation is risk-based: some pools

require abnormally high or low expected returns, due to the risks involved. This argument

seems weak in the presence of negative average returns (risk premia should generally be

positive) and as I account for common risk factors in the cryptocurrency space. In the next

section, I use options data to provide explicit estimates of risk premia and show that large

abnormal returns remain.

5.2 Options-implied liquidity premium

As shown in Section 1, adverse selection losses are a deterministic function of the relative

price of the two tokens, assuming no arbitrage. This means that I can derive the present value

of adverse selection losses in a a Black-Scholes option-pricing framework. Indeed, as shown

in Figure 3, adverse selection losses resemble the payoff of a straddle, i.e. the combination

of a call and a put.5

Formally, the relative price of the two tokens Pt follows a geometric Brownian motion under

the risk-neutral measure:

dPt = (r − 1

2
σ2)Ptdt+ σPtdW

Q
t .

5See Evans [2020] for more.
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Terminal price can be written as:

PT = P0 exp[(r −
1

2
σ2)T + (σ

√
T )ϵQ].

The present value of an instrument whose payoff is solely a function of terminal price f(PT )

is then:

V = erTEQ[f(PT )].

In particular, the present value of adverse selection losses is:

V AS = erTEQ[RAS
T ], (8)

where RAS is given in Equation 6.

One key input to this framework is volatility. I use the options-implied volatilities calculated

by T3 Index. Options-implied volatility is the volatility that matches theoretical Black-

Scholes option prices with the ones actually observed in the market. In other words, for

call (put) options, whose payoffs are given by f call(PT ) = max(0, PT − S) (fput(PT ) =

max(0, S − PT )), where S stands for strike price, options-implied volatility is the value of σ

such that V in My framework above matches the actually observed market value of these call

(put) options. What is special about implied volatility is that it has market premium baked

in. Using option-implied volatility enables to answer the following question: what would be

the present value of options that replicate adverse selection losses?

The other inputs to this framework are as follows. Since the options-implied volatilities from

T3 Index are 30-day, I choose T to be 30-day. r is one-month U.S. Treasury Bill rate.

We derive V AS using Monte Carlo. Specifically, I simulate a large sample of ϵQ, which give

us a large sample of PT and in turn RAS
T . I take the average of the sample of RAS

T to obtain

EQ[RAS
T ] and discount it to get V AS.
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Figure 5 shows the results. The graphs plot realized and options-implied LP returns for the

BTC-USD pools and the ETH-USD pools, averaged across the three stablecoins: USDC,

USDT and DAI.6 Realized fee revenues are noticeably bigger than options-implied present

value of adverse selection losses. In other words, it is significantly more profitable to provide

liquidity to BTC-USD (ETH-USD) pools than selling options on BTC (ETH), even though

the two investments have identical exposure adverse selection losses. Moreover, there is

a visible positive correlation between realized fee revenues and realized adverse selection

losses, suggesting that fee revenues are a good hedge against adverse selection losses and

therefore should require a lower premium – in other words, the positive gap between actual

vs options-implied LP returns is bigger than it looks. The results here are stronger evidence

of misallocation: there has been insufficient liquidity on BTC-USD and ETH-USD pools,

since liquidity provision would have earned much higher returns than what is implied by the

options market.

5.3 Sorted portfolio approach

I use a sorted portfolio approach to further demonstrate the persistence of cross-sectional

return differences. At the beginning of each week, liquidity pools are sorted into five quintiles

based on their realized net returns over the past week. A TVL-weighted portfolio is formed

for pools in each quintile. The portfolios are held for one week and then dissolved.

To avoid outlier effects, I restrict to pool-week observations with at least $100K TVL. Fur-

thermore, I require at least 50 such pools to be available, or otherwise discard the time

period. I winsorize returns at the 99th percentile for each cross section.

Table 1 shows the results. Pools with high (low) past returns continue to earn high (low)

returns. Specifically, pools in the highest (lowest) quintile of past returns earn a risk-adjusted

6Technically, the pools are WBTC and WETH, which have near identical prices as BTC and ETH.

16



return of 0.42% (-0.70%) in the week that follows, or 25.64% (-35.51%) per annum. The

future return difference between the top quintile and the bottom quintile of past return is

1.12% per week on a risk-adjusted basis, or 93.75% per annum.

6 Unsophisticated LP Flows

The previous section shows predictably persistent cross-pool return differences. Why doesn’t

liquidity adjust? In this section, I directly examine LPs’ actions to deposit or withdraw

liquidity. I find that LPs are insensitive to net returns. Instead, LPs chase fee revenues,

which are prominently marketed as APY on the online platforms, but ignore adverse selection

losses, which are not. As a result, pools with higher fee revenues attract more liquidity, even

though they tend to have higher adverse selection losses and insignificant returns on net.

6.1 Measuring LP flows

I measure LP flows to a pool p in from time t to time t+ 1 as:

Flowp,t+1 =
1

2

DepositAp,t+1 −WithdrawalAp,t+1

ReserveAp,t
+

1

2

DepositBp,t+1 −WithdrawalBp,t+1

ReserveBp,t
(9)

where Depositt+1 denotes total amount of token deposited into the pool from time t to t+1,

Withdrawalt+1 total amount of token withdrawn from the pool from time t to t + 1, and

Reservet reserve of token at the end of time t.
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6.2 Determinants of LP flows

What determines LP flows? I borrow the regression framework that is typical in the large

literature on mutual fund flows [e.g., Barber et al., 2016]:

Flowp,t+1 = β1R
fee
p,t + β2(−RAS

p,t ) + γControlsp,t + FE + ϵp,t+1 (10)

where Flow, Rfee, and RAS are previously defined in Equations 9, 5, and 6, controls include

past LP flows, log TVL and indicators for liquidity mining rewards, and FE includes time

fixed effects and/or pool fixed effects. I change the sign of RAS so that it represents adverse

selection losses.

I construct My sample as follows. I start with the universe of all Uniswap V2 pools. As

small pools can have abnormally large flows that bias the results, I exclude pools that never

reach $1 million in TVL and exclude observations where TVL is less than $10,000. I focus on

the time period between May 2020 (after Uniswap V2 was launched) and April 2021 (before

Uniswap V3 was launched that renders V2 obsolete). I focus on the weekly frequency but

show robustness with daily and monthly frequency. I winsorize all variables at the 99th

percentile to mitigate the influence of outliers.

Table 2 shows the baseline results. Column 1 and 2 examine the relationship between future

liquidity flow and past net return. The coefficient on past net return is zero, meaning that

future liquidity flow does not respond to past net return at all. This provides a consistent

explanation with my previous results on persistent return differences – pools with high past

net returns do not experience higher inflows of liquidity and therefore continue to provide

high future net returns.

Column 3 and 4 breaks down net return into its two components, fee revenue and adverse

selection loss. The coefficient on past fee revenues is positive and significant. According to
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column 4, 1 p.p. increase in fee revenues over the past week is associated with 1.57 p.p. higher

flow of liquidity into the pool over the subsequent week. This is economically significant,

since the standard deviation of weekly fee revenues and weekly LP flows are respectively 0.69

p.p. and 8.29 p.p.

The coefficient on past adverse selection losses is small and not significant from zero. Without

fixed effects, LPs do appear to respond to past adverse selection losses – this is consistent

with the findings in Lehar and Parlour [2021], Capponi and Jia [2021]. However, there could

be persistent unobserved factors that affect both flows and adverse selection losses. For

example, tokens that are popular can have both lower volatility (and hence lower adverse

selection losses) and high flows, on average. Therefore, I argue that it is important to

include pool fixed effects, which can absorb these persistent unobserved factors. With pool

fixed effects, I effectively focus on news to fee revenues and news to adverse selection losses,

and I find that LPs only respond to the former.

Among the control variables, the coefficient on past flows is highly significant. This is

consistent with the literature on mutual fund flows that retail investors flows are highly

persistent and affirms the importance of controlling for past flows.7.

I conduct a battery of robustness checks in Table 3. Panel B and C conduct the same analysis

but at daily or monthly frequency. The key results remain the same. Panel D and E perform

the same analysis but expands to smaller pools or restricts to bigger pools – the coefficient

on past fee revenues becomes bigger as I restrict to bigger pools, implying that there is more

chasing of past fee revenues in more popular pools and assets.

Instead of LP returns, I can instead focus on the primitives that determine LP returns, as is

done in Capponi and Jia [2021]. Since fee revenues are simply a fraction of trading volumes,

7This is another important difference between my regressions and the one in Lehar and Parlour [2021]
and Capponi and Jia [2021]
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I can alternatively focus on trading volumes, defined as:

V olumep,t =
1

2

SwapInA
p,t

ReserveAp,t−1

+
1

2

SwapInB
p,t

ReserveBp,t−1

As shown in Section 3, assuming no arbitrage, adverse selection losses are a deterministic

function of price change. Therefore, I can alternatively focus on volatility, defined as:

V olatilityp,t = StandardDeviationt
τ=t−1(logPτ )

This measurement is invariant with respect to the choice of base currency (i.e. whether token

A or token B is the numeraire) and to scalar multiplication of token values. Panel A of Table

3 shows that my main results remain unchanged.

Instead of the pooled regression approach, I can use the Fama-MacBeth approach [Fama

and MacBeth, 1973] that is more resistant to the time-varying weighting problem [Ben-

David et al., 2021]. The procedure is to run the same regression in Equation 10 but only

using the cross section for each time period. Figure 6 shows the results. Flows respond

positively to past fee revenues consistently over time, up until the launch of Uniswap V3

(when V2 became obsolete). In contrast, flows do not respond to past adverse selection

losses in a consistent manner.

So far, I have focused on realized LP returns. However, if LPs are sophisticated, they should

instead focus on expected LP returns. Since My baseline specification is with pool fixed

effects and focuses on news to LP returns, realized LP returns are indeed the best predictors

of future LP returns. However, for volatilities, options-implied volatilities are known to have

forecasting power beyond what realized volatilities can do, so I test whether LP flows respond

to changes in implied volatilities. Table ?? shows that LP flows actually respond positively

to increase in implied volatility. I hypothesize the following explanation: implied volatility

is high when sentiment is high, and when sentiment is high flow is high.
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6.3 Why do LPs ignore adverse selection losses?

Why do LP flows chase fee revenues but not adverse selection losses? Past fee revenues

are prominently marketed as “APY” on these online platforms. Indeed, Figure 7 shows

what regular users would see on the websites. APY (annual percentage yield) is usually

associated with deposit-like investment products to imply safe guaranteed returns. However,

fee revenues from liquidity pools are highly volatile, what was realized in the past does

not forecast exactly what is the future return. More importantly, adverse selection losses

are in the calculation of APY and not displayed anywhere. I hypothesize that LPs are

unsophisticated investors that are heavily influenced by the marketing.

6.4 The cost of ignoring adverse selection losses

Given the results above, one can still think of ways to justify LP rationality. In particular,

LPs might chase past fee revenues more than past adverse selection losses, because the former

is more persistent and hence more predictable than the latter. These arguments can indeed

find justification in the data: the auto-correlations of fee revenues and adverse selection

losses are 0.5 and 0.3 at weekly frequency, 0.4 and 0.2 at monthly frequency. However, one

can already raise doubt on this line of reasoning by observing that fee revenues are not more

persistent than adverse selection losses by as wide a margin as their regression coefficients

are in Table 2.

In what follows, I show that LPs can derive significant gains by paying attention to adverse

selection losses instead of chasing past fee revenues alone. First, I simulate the payoff of

naively chasing past fee revenues without considering adverse selection losses, using the

same sorted portfolio approach from before. Specifically, at the beginning of each week, I

sort all Uniswap V2 pools into five quintiles based on their past fee revenues, form a TVL-

weighted portfolio for pools in each quintile, hold the portfolios for one week, and dissolve
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the portfolios.

Table 4 shows the results. Column 1 confirms that the sorting variable goes up monotonically

from the bottom quintile to the top quintile. Column 4 shows the future fee revenue, which

also goes up monotonically, but considerably less magnitude. To understand this dampened

monotonicity, I use the fact that fee revenue is fee amount divided by liquidity amount,

and examine the numerator and the denominator separately. Column 2 shows reversion in

the numerator – pools with low past fee revenue see high growth in fee amount, whereas

pools with high past fee revenue see large decline in fee amount. Column 3 shows that the

denominator behaves as expected – pools with high past fee revenue experience large inflows

of liquidity, whereas pools with low past fee revenue experience large outflows of liquidity.

These two effects together lead to significant dampening of the monotonicity of fee revenues.

More importantly, Column 5 shows that pools with higher fee revenue also have higher

adverse selection losses. When an asset is being traded a lot, that is usually when there is

large price to the asset, either because of sentiment or new information. Column 6 shows

that future net return is not significantly different from zero for all five quintiles, and there

is no significant difference between the top quintile and the bottom quintile.

I now demonstrate the power of adding adverse selection losses into the decision-making

process. After sorting pools into five quintiles by past fee revenues, I further sort the pools

in each quintile into five sub-quintiles by past price volatility. This gives us a total of 25

portfolios. Table 5 shows the results. There is significant return difference between high-

past-volatility pools and low-past-volatility pools, conditional on having the same past fee

revenues. For each past-fee-revenue quintile, the low-past-volatility pools predictably earn

significantly higher net returns than high-past-volatility pools. Even restricting to pools

with the highest past fee revenues, future net returns vary from 0.42% on average for the

low-past-volatility pools to -1.28% on average for the high-past volatility pools. Within the

high past fee quintile, the net return difference between the low-volatility pools and the
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high-volatility pools is 1.70% per week, or 140.26% per annum.

6.5 Counterfactual liquidity

What would happen if LPs are equally sensitive to adverse selection losses as they are to fee

revenue? Since adverse selection losses are always positive, the counterfactual liquidity flows

should be much lower. Lower liquidity leads to lower trading activities and hence lower fee

revenue, which leads to further declines in liquidity provision. In equilibrium, there should

be substantially lower liquidity, due to this multiplier effect.

In this current version of the paper, I provide a naive derivation of counterfactual liquidity

without the multiplier effect. Specifically, I calculate counterfactual outflows due to adverse

selection losses as β1(−RAS
p,t ), where β1 is LPs’ sensitivity to fee revenue (1.57 according to

Table 2) and (−RAS
p,t ) is realized adverse selection losses. I calculate counterfactual outflows

for each pool in each period. The results show that there would have been 34% cumulative

outflows (or 34% less inflows) to Uniswap V2 pools if LPs were as sensitive to adverse

selection losses as they are to fee revenue.

7 Efficiency with Sophisticated LPs

What would happen to LP returns and LP flows, if LPs become more sophisticated? I

get a glimpse from the launch of Uniswap V3. After its launch in May 2021, Uniswap V3

dethroned Uniswap V2 and became the default dapp on Uniswap’s website. As a result, it

attracts most of the liquidity since May 2021. It is reasonable to assume that remaining

active liquidity providers on Uniswap V2 are more sophisticated.

Figure 5 shows that realized fee revenues are much closer to options-implied LP premia after
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the launch of Uniswap V3.

Column 2 of Table 1 shows that return predictability decreases significantly after the launch

of Uniswap V3.

Table 7 runs the following regression:

Flowp,t+1 = β1R
fee
p,t +β′

1V 3t ×Rfee
p,t + β2(−RAS

p,t ) + β′
2V 3t × (−RAS

p,t )

+ γControlsp,t + FE + ϵp,t+1

(11)

The results in Table 7 that flows are much less responsive to past fee revenues and much

more sensitive to adverse selection losses after the launch of Uniswap V3.

8 Conclusion

In this paper, I provide an in-depth empirical analysis of LP returns and LP flows on one

of the largest decentralized exchanges. My main finding is that DEX LPs behave in a very

unsophisticated manner. They chase fee revenues – the part of return that is prominently

marketed as APY – but ignore adverse selection losses – the part of return that is implicit

and rarely displayed. As a result, liquidity is misallocated. Pools with higher realized

net returns do not attract sufficient liquidity and continue to yield higher net returns in the

future. On the other hand, pools with higher fee revenues attract significantly more liquidity,

even though these pools tend to also have higher adverse selection losses and zero expected

returns on net.
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L. Calvet, C. Célérier, P. Sodini, and B. Vallee. Can Security Design Foster Household Risk-
Taking? CEPR Discussion Papers 14955, C.E.P.R. Discussion Papers, June 2020. URL
https://ideas.repec.org/p/cpr/ceprdp/14955.html.

A. Capponi and R. Jia. The adoption of blockchain-based decentralized exchanges, 2021.
URL https://arxiv.org/abs/2103.08842.

L. W. Cong, X. Li, K. Tang, and Y. Yang. Crypto Wash Trading. Papers 2108.10984,
arXiv.org, Aug. 2021. URL https://ideas.repec.org/p/arx/papers/2108.10984.

html.
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Panel A: Aggregate Trading Volume

Panel B: Aggregate Liquidity

Figure 1: Aggregate Trading Volume and Liquidity on Decentralized Exchanges.
Data are from Dune Analytics (dex.trades and dex.liquidity).

28



Figure 2: Constant-Product Automatic Market Maker. X-axis is reserve of one token
(e.g. BTC) and y-axis is reserve of the other token (e.g. USD). The solid line plots Equation
1. The dash lines show what would be the amount of the second token swapped out (∆Y )
if certain amount of the first token is swapped in (∆X).
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Figure 3: Adverse Selection Loss. X-axis is gross change in relative price of the two tokens
in a CPAMM pool. Y-axis is adverse selection loss, i.e. the opportunity cost of providing
liquidity relative to holding on to the two tokens, assuming that fee revenue is zero. The red
line plots the mechanical relationship between adverse selection loss and price change, given
by Equation 6.
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Panel A: Raw Average (%)

Panel B: Risk-Adjusted Alpha (%)

Panel C: Sharpe Ratio (%)

Figure 4: Cross-Sectional Distribution of LP Net Returns. The figures plot distribu-
tions of raw averages (Panel A), risk-adjusted alphas (Panel B), and Sharpe ratios (Panel
C) of annualized weekly LP net returns across Uniswap V2 pools with at least $100K total
value locked.
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BTC-USD

ETH-USD

Figure 5: Options-Implied Liquidity Premium. The lines show options-implied vs
realized LP compensation for the BTC-USD pools and the ETH-USD pools. Options-implied
premia are derived based on Equation 8 and Monte Carlo simulation. Start time corresponds
to when the pool was created, the first dash vertical line corresponds to when there is at
least $1 million in total value locked, and the second dash vertical line corresponds to when
Uniswap V3 was launched.
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Figure 6: Determinants of LP Flows, Fama-MacBeth. The lines show estimated β1

and β2 for each week t from the flow regressions in Equation 10.
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Uniswap V2

SushiSwap

Figure 7: The Display of Fee Revenue as APY. The top graph shows how fee revenue
is displayed on Uniswap V2’s website. The bottom graph shows how fee revenue is displayed
on SushiSwap’s website. These screenshots were taken on October 1, 2022.
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Tables
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Table 1: Future Net Returns Sorted by Past Net Returns. At the beginning of each
week, I sort Uniswap V2 pools into five quintiles based on their realized net returns over the
past week, form a TVL-weighted portfolio for pools in each quintile, hold the portfolios for
one week, and then dissolve the portfolios. The table shows the mean (and its t-statistic in
parentheses) of weekly returns for each portfolio, as well as of the difference between the top
quintile and the bottom quintile.
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Table 2: Determinants of LP Flows, Baseline. The table shows regression results of
Equation 10. The sample includes weekly observations of all Uniswap V2 pools with more
than $100K in TVL from June 2020 (after Uniswap V2 was launched) to April 2021 (before
Uniswap V3 was launched). t-statistics are reported in parentheses. *, **, and *** denote
p-values less than 0.10, 0.05, and 0.01, respectively.
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Table 3: Determinants of LP Flows, Robustness. The tables show various robustness
checks of the regression 10.

Panel A: Volume and Volatility

Panel B: Daily Flows

38



Panel C: Monthly Flows

Panel D: TVL > $10K
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Panel E: TVL > $1M
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Table 4: LP Returns Sorted by Past Fee Revenues Only. At the beginning of each
week, I sort Uniswap V2 pools into five quintiles based on their fee revenues over the past
week, form a TVL-weighted portfolio for pools in each quintile, hold the portfolios for one
week, and then dissolve the portfolios. The table shows the mean (and its t-statistic in
parentheses) of different metrics for each portfolio, as well as of the difference between the
top quintile and the bottom quintile.
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Table 5: LP Returns Sorted by Both Past Fee Revenues and Past Volatilities.
At the beginning of each week, I sort Uniswap V2 pools into five quintiles based on their
fee revenues over the past week, further sort each quintile into five sub-quintiles based on
their price volatilities over the past week, form a TVL-weighted portfolio for pools in each
sub-quintile, hold the portfolios for one week, and then dissolve the portfolios. Panel A (B)
shows the raw average (three-factor alpha) – and its t-statistic in parentheses – of weekly
returns of each portfolio, as well as of the difference between the sub-quintiles with the lowest
volatility vs with the highest volatility.

Panel A: Raw Average

Panel B: Three-Factor Alpha
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Table 6: LP Returns Before vs After V3 Launch. This table repeats Table 1 for before
vs after the launch of Uniswap V3. t-statistics are reported in parentheses. *, **, and ***
denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table 7: LP Flows Before vs After V3 Launch. The table shows regression results of
Equation 11. The sample includes weekly observations of Uniswap V2 pools with more than
$100K TVL from June 2020 to March 2022. t-statistics are reported in parentheses. *, **,
and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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